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Abstract. The novel inelastic collision properties of two-soliton interaction for an n-component coupled
higher order nonlinear Schrödinger equation are studied. Some interesting features of three soliton interac-
tions, related to the integrability of the n-component coupled higher order nonlinear Schrödinger equation
are also discussed.

PACS. 42.81.Dp Propagation, scattering, and losses; solitons – 02.30.Jr Partial differential equations –
42.65.Tg Optical solitons; nonlinear guided waves – 42.79.Sz Optical communication systems, multiplexers,
and demultiplexers

1 Introduction

The subject of integrable model is very fascinating largely
because of its innumerable symmetries and a special class
of solutions known as soliton solutions. Only a few systems
in the nature are known to be integrable. The coupled
nonlinear Schrödinger equation (CNLS) and its higher or-
der generalization namely coupled higher order nonlinear
Schrödinger equation (CHNLS) are some of the exam-
ples of integrable equations which have direct relevance
in the propagation of optical solitons in Kerr type nonlin-
ear fibre. Coupled integrable systems have many impor-
tant applications in photorefractive crystals [1] and also in
all optical computations [2]. The cross phase modulation
(CPM) phenomena in CNLS equation provides an inter-
esting pulse shepherding effect to align the time arrival of
the pulses [3]. The CPM phenomena along with group ve-
locity dispersion (GVD) can also be utilized in compress-
ing optical pulses at the one soliton level [4]. Recently the
existence of multi-component solitons are experimentally
established [5].

In this paper we have considered some interesting fea-
tures of CHNLS equation, which describes the propaga-
tion of the optical pulses of very short width, of the order
of 10−15 s. We have studied the novel inelastic collision
of two solitons for an n-component CHNLS equation. The
inelastic collisions among the three solitons are also stud-
ied. The three soliton interactions may be interpreted as a
combination of two-soliton interactions occurring at three
different points. This is in compliance with the three par-
ticle interactions in integrable systems. The energy ex-
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change among the components of three solitons may oc-
cur at any of the three two-soliton interaction points. In
this context, it is important to note that the phenom-
ena of shape changing vis a vis inelastic collisions and
their consequences have been observed for the CNLS equa-
tion by considering two soliton solutions of both two and
three components and subsequently n-component gener-
alization of two soliton solutions and n-complexes have
been studied [2]. Moreover, from integrability point of
view study of the collisions of three solitons becomes in-
dispensable and one needs to address this issue separately.

The paper is organized in the following sequence. In
Section 2 the CHNLS equation is introduced and its
N soliton solution is given explicitly. In Section 3 two-
soliton interactions and its asymptotic analysis are ob-
tained showing the novel inelastic collisions among the
components of the solitons. Some interesting features of
three soliton interactions, related to the integrability of
the n-component CHNLS equation are addressed in Sec-
tion 4. Section 5 is the concluding one.

2 CHNLS equation and N-soliton solution

The n-component CHNLS equation incorporating the ef-
fects of Kerr type nonlinearity and stimulated Raman
scattering may be written as

Eiz + iEiττ + 2i


 n∑

j=1

E∗
j Ej


 Ei + εEiτττ

+ 3ε


 n∑

j=1

E∗
j Ej


 Eiτ + 3ε


 n∑

j=1

E∗
j Ejτ


Ei = 0 (1)
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where Ei is n-component electric field. z and τ denote the
direction of propagation and time variable respectively.
The parameter ε is the ratio of the width of the spectra ∆ω
to the carrier frequency ω such that ε = ∆ω

ω < 1 and
consequently the parameter ε cannot be set to zero for
optical solitons.

A particular gauge equivalent form of (1) may be writ-
ten as [6]

qix + εqittt + 3ε
n∑

j=1

(
q∗j qj

)
qit + 3ε

n∑
j=1

(
q∗j qjt

)
qi = 0 (2)

where the transformation relations are given by

Ei(z, τ) = qi(x, t)ei(− 1
27ε2 x− 1

3ε t)

x = z

t = τ − 1
3ε

z· (3)

The transformed equation (2) is known as the coupled
complex modified KdV equation (CCMKdV) whose N
soliton solutions for n-component field is known [6]. Notice
that the CCMKdV equation in (2) is convenient particu-
larly for the Lax representation of the system and conse-
quently for applying the inverse scattering method to ob-
tain N -soliton solution. However, as a result of the trans-
formations (3), there is no change of the envelope function,
but for a constant shift in velocity for all solitons. Con-
sequently, the shape of the pulses for CCMKdV equation
and CHNLS equation remains the same i.e., |Ei| = |qi|
and the transformation will not affect the subsequent re-
sults of the two gauge equivalent systems.

The N - soliton solution of the n-component CCMKdV
equation may be written in the most compact form as [6],

qi(x, t) = −2
N∑

j=1

(BC−1)ije−iλ∗
j t (4)

where, B and C are respectively n×N and N×N matrices
whose explicit forms are given by

(B)ij = iC(j)
n+1i(0)e−8iελ∗3

j x−iλ∗
j t (5)

and

(C)ij =
n∑

p=1

N∑
k=1

C(j)
n+1p(0)C∗(k)

n+1p(0)
α′

n+1n+1(λ
∗
j )α

∗′
n+1n+1(λk)

× e−i(λ∗
i +λ∗

j −2λk)t+8iε(λ3
k−λ∗3

j )x

(λk − λ∗
j )(λk − λ∗

i )
− δij · (6)

In the above equation αij are the elements of the (n+1)×
(n + 1) scattering matrix and λ is the spectral param-
eter. C(j)

(n+1)p is related to the elements of the scatter-

ing matrix at the position of the simple poles, C(j)
(n+1)p =

α(n+1)p(λ∗
j )|x=0 and ′ over α denotes the derivative with

respect to λ.

The one soliton solution (1SS) for n-coupled system
directly follows from (4, 5, 6) by considering N = 1 and
is given as

qi(x, t) =
C(1)

n+1ie
−R11

2 eiη1I

cosh(η1R + R11
2 )

(7)

where η1R and η1I respectively denote the real and imagi-
nary parts of η1 = −2iλ∗

1t−8iελ∗3
1 x+iπ

2 and eR11 = −κ11
λ2
11

.
The complex variables are defined as

κ11 =
n∑

p=1

∣∣∣∣∣∣
C(1)
(n+1)p

α′
n+1n+1(λ1)

∣∣∣∣∣∣
2

and

λ11 = λ1 − λ∗
1.

For convenience let us define λ1 = λ1R+iλ1I

2 , where the
subscripts R and I denote the real and imaginary parts
and consequently η1R and η1I become

η1I = −λ1Rt + ελ1R(3λ2
1I − λ2

1R)x +
π

2
(8)

η1R = −λ1I [t − ε(λ2
1I − 3λ2

1R)x]. (9)

From the argument of the cosh function of the 1SS (7)
and (9), it is straight forward to identify the width of the
soliton pulse as Γ = |λ1I |−1 and the soliton travels with
a group velocity Vg = [ε(λ2

1I − 3λ2
1R)]−1 in the positive x

direction when λ2
1I > 3λ2

1R and in the negative x direction
when λ2

1I < 3λ2
1R.

3 Two-soliton interaction

The two soliton solution (2SS) can be obtained from
(4, 5, 6) by putting N = 2, the explicit form of the ith
component of 2SS being

qi =
2

∑2
m=1

(
C(m)

n+1ie
ηm + eη1+η2+η�

m+δ(i)
m

)
Det[C]

(10)

where,

eδ(i)
m =

2∑
r,s=1

C(r)
n+1i

κms

λms

(
1

λmr
− 1

λms

)
· (11)

In (11) λij = λi − λ∗
j and ηm = −2iλ∗

mt − 8iελ∗3
m x + iπ

2 .
Det[C] is the determinant of 2 × 2 dimensional matrix
obtained from (C)ij (6). The form of Det[C] in terms of
the spectral parameters emerges rather lengthy but it will
be useful for the asymptotic analysis of the interacting
solitons and will be seen later. In terms of the spectral
parameters Det[C] is given as

Det[C] = 1 +
2∑

r,s=1

eηr+η�
s +Rrs + e2η1R+2η2R+Q (12)
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Fig. 1. Plot of |q1| and |q2| showing elastic collision.

with

eRrs = −κrs

λ2
rs

, (13)

κrs =
n∑

p=1

C(s)
n+1pC
(r)

n+1p

α′
(n+1)(n+1)(λ



r)α′


(n+1)(n+1)(λs)
(14)

and eQ = Det[κ]Det[L], [κ] = (κij

λij
) (no sum over i, j),

[L] = (λij)−1, [κ] and [L] being 2× 2 matrices. To under-
stand the interaction in a more explicit manner we anal-
yse the asymptotic limits of the 2SS (10). The asymptotic
limit may be obtained by observing the 2SS when both the
solitons are infinitely apart. This may be achieved by tak-
ing the limit η2R → ±∞. As a consequence ith component
of the remaining soliton acquires the form

q
(l±)
i =

λlIA
(l±)
i eiηlI

cosh(ηlR + Φl±)
(15)

where A
(l±)
i and Φ(l±) may be interpreted as the am-

plitudes and phases of ith component of lth soliton re-
spectively. Notice that in general A

(l−)
i are different from

A
(l+)
i . This may occur due to exchange of energy between

the solitons. The amplitude A
(l−)
i in terms of C(l)

n+1i is
given as

A
(l−)
i =

C(l)
n+1i√
κll

· (16)

The expression for A
(l+)
i however, is more involved and

may be written in terms of A
(l−)
i as

A
(l+)
i = A

(l−)
i T l

i . (17)

T l
i may be interpreted as the transition matrix and is de-

fined as

T 1
i =

(
1 − C(2)

n+1i

C(1)
n+1i

Λ2

)
√

1 − Λ1Λ2

√(
λ∗

2 − λ∗
1

λ2 − λ1

) (
λ∗

2 − λ1

λ2 − λ∗
1

)
(18)

and

T 2
i =

(
1 − C(1)

n+1i

C(2)
n+1i

Λ2

)
√

1 − Λ1Λ2

√(
λ∗

2 − λ∗
1

λ2 − λ1

) (
λ2 − λ∗

1

λ∗
2 − λ1

)
(19)

where Λ1 = κ12λ11
κ11λ12

, Λ2 = κ21λ22
κ22λ21

. If |T l
i | = 1, the solitons

pass through each other without being affected in their
shapes and sizes. Otherwise, we will see that the solitons
exchange energy at the time of interaction. The phase shift
Φ(l) as a result of collision may be obtained from the fol-
lowing relation.

Φ(l) = Φ(l+) − Φ(l−) (20)

where Φ(l−) = 1
2 (R11) and Φ(l+) = 1

2 (Q−R22) and conse-
quently the phase shift becomes Φ(l) = 1

2 (Q−R11 −R22).
It is now interesting to note that for equal values of C(l)

n+1i

for each component of the solitons, |T l
i | becomes unity

and consequently there is no exchange of energy among
the components of each soliton. However, if the relative
phases among C(l)

n+1i are introduced the energy of each
individual component no longer remains constant due to
collisions and in that case |T l

i | �= 1. This analysis has been
presented graphically by plotting two soliton interaction
for a two component system with the ε = 0.1, λ1 = −1.5−i
and λ1 = −0.5 − 2i. One of the solitons is moving with
group velocity −1.74 and the other is moving with a group
velocity 3.07. In Figures 1 two soliton interaction is plotted
with C(l)

n+1i = 1 for each component, where the energy pro-
file of each component of the solitons remains unchanged.
In Figures 2 two soliton interaction is plotted with non-
trivial relative phases, C(1)

n+1 1 = C(1)
n+1 2 = C(2)

n+1 2 = 1 and
C(2)

n+1 1 = 46(1 − i) showing a considerable exchange of
energy among the components. Figure 3 shows that the
overall intensity profile, represented by |q| of the 2SS re-
mains unchanged although there are appreciable energy
exchange among the components of a soliton. It is an inter-
esting result in the context of all optical computations [2]
leading to the construction of the logical binary gates.
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Fig. 2. Plot of |q1| and |q2| showing inelastic collision.

Fig. 3. Plot of |q| showing constant energy profile.

4 Three-soliton interactions

The explicit form of the three soliton solution (3SS) can
be obtained from (4, 5, 6) by putting N = 3, the explicit
form of the ith component of 3SS being

qp =
−2

Det[C]

[
3∑

i=1

C(i)
n+1pe

ηi

+
3∑

i,j,m=1i�=j �=m

(adjκ̃j)mm(adjL̃j)mme2ηiR+ηj

+
3∑

m=1

Det[κ̃m]Det[L̃m]e
�3

i,m=1
i�=m

2ηiR+ηm

]

where,

Det[C] = −1 −
3∑

i,j=1

eηi+η∗
j eRij

−
3∑

i=1

3∑
k,j=1
i�=j �=k

(adjκ)jk(adjL)jke2ηiR+ηk+η�
j

−
3∑

i,j,k=1
i�=j �=k

(adjκ)kk(adjL)kke2ηiR+2ηjR

+Det[κ]Det[L]e2η1R
+2η2R

+2η3R

with L is a 3× 3 dimensional matrix with elements (λ−1
ij )

and [κ] is also a 3 × 3 dimensional matrix with elements

Fig. 4. Contour plot of three soliton interaction.

κij

λij
(no sum over i, j). [κ̃j ] is the matrix [κ], where the

jth row has been replaced by
∑3

i=1 ejiC(i)
n+1p and L̃j is

the matrix where the jth row has been replaced by a unit
row vector,

∑3
i=1 eji. The phenomena of shape changing

due to exchange of energy among the components of soli-
tons becomes more interesting in the three-soliton inter-
action case. It is observed that the interactions take place
at three different space time points with two solitons in-
teract at each time. Thus the energy exchange among
the components in three solitons interaction may occur
at three different points. This is demonstrated in Figure 4
by the contour plot of the three solitons interaction with
ε = 0.1, λ1 = −1.5 − i, λ2 = −0.01 + 2i, λ3 = −0.9 +
2i, C(1)

n+1 1 = C(2)
n+1 1 = C(3)

n+1 1 = 10−3, C(2)
n+1 2 = C(3)

n+1 2 = 1
and C(1)

n+1 2 = 103−0.8i. Two of the solitons are moving in
the positive x direction with group velocities 2.5 and 6.36
and the third soliton is moving in the negative x direction
with group velocity −1.74. The nature of three soliton in-
teractions opens up another possibility of three solitons
interaction where second and third solitons interact first
instead of first and second solitons leaving the final con-
figuration same in both the cases.

5 Conclusion

In conclusion, we have shown the novel shape changing
phenomena associated with two soliton interaction for n
component CHNLS equation. The three solitons interac-
tion also exhibits energy exchange, but the exchange may
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occur at three points. This may lead to a more flexibility
in constructing logical gates in all optical computing sys-
tems. The three solitons interaction also demonstrates an
interesting feature conforming the exact integrability of
the system a la Zamolodchikov [7] and indicates the exis-
tence of Yang Baxter like relation, which will be published
elsewhere.
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